Environmental Controls on Nitrogen and Sulfur Cycles in Surficial Aquatic Sediments
نویسندگان
چکیده
Enhanced anthropogenic inputs of nitrogen (N) and sulfur (S) have disturbed their biogeochemical cycling in aquatic and terrestrial ecosystems. The N and S cycles interact with one another through competition for labile forms of organic carbon between nitrate-reducing and sulfate-reducing bacteria. Furthermore, the N and S cycles could interact through nitrate [Formula: see text] reduction coupled to S oxidation, consuming [Formula: see text] and producing sulfate [Formula: see text] The research questions of this study were: (1) what are the environmental factors explaining variability in N and S biogeochemical reaction rates in a wide range of surficial aquatic sediments when [Formula: see text] and [Formula: see text] are present separately or simultaneously, (2) how the N and S cycles could interact through S oxidation coupled to [Formula: see text] reduction, and (3) what is the extent of sulfate reduction inhibition by nitrate, and vice versa. The N and S biogeochemical reaction rates were measured on intact surface sediment slices using flow-through reactors. The two terminal electron acceptors [Formula: see text] and [Formula: see text] were added either separately or simultaneously and [Formula: see text] and [Formula: see text] reduction rates as well as [Formula: see text] reduction linked to S oxidation were determined. We used redundancy analysis, to assess how environmental variables were related to these rates. Our analysis showed that overlying water pH and salinity were two dominant environmental factors that explain 58% of the variance in the N and S biogeochemical reaction rates when [Formula: see text] and [Formula: see text] were both present. When [Formula: see text] and [Formula: see text] were added separately, however, sediment N content in addition to pH and salinity accounted for 62% of total variance of the biogeochemical reaction rates. The [Formula: see text] addition had little effect on [Formula: see text] reduction; neither did the [Formula: see text] addition inhibit [Formula: see text] reduction. The presence of [Formula: see text] led to [Formula: see text] production most likely due to the oxidation of sulfur. Our observations suggest that metal-bound S, instead of free sulfide produced by [Formula: see text] reduction, was responsible for the S oxidation.
منابع مشابه
Microbial sulfur transformations in sediments from Subglacial Lake Whillans
Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining ke...
متن کاملThe life sulfuric: microbial ecology of sulfur cycling in marine sediments
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is pri...
متن کاملAmmonia Oxidation Potential and Microbial Diversity in Sediments from Experimental Bench - Scale Oxygen - Activated
by Jennifer Allen, M.S. Washington State University May 2009 Chair: Marc W. Beutel Ammonia pollution, commonly from sewage treatment plants and agricultural activities, can degrade surface waters by causing eutrophication and exhibiting toxicity to aquatic biota. Constructed treatment wetlands can be used to treat a wide array of waste waters, but low oxygen concentrations characteristic of the...
متن کاملMicroorganisms and their roles in fundamental biogeochemical cycles.
Biogeochemistry is the discipline that strives to understand intricate processes, often microbially mediated ones, that transform and recycle both organic and inorganic substances in soils, sediments, and waters. These processes, manifestations of diverse and highly evolved cellular mechanisms catalyzed by Bacteria and Archaea, maintain the biosphere. Progress in biogeochemistry relies upon the...
متن کاملDistribution and chemical fractionation of arsenic in surficial sediments of the Lami coastal environment in Fiji
A case of arsenic contamination has recently been detected in the Lami coastal environment during the course of a heavy metal monitoring in Fiji’s coastal environment. Twenty two surficial sediment samples were sampled during the 20082009 period, extracted for arsenic and analysed using graphite furnace atomic absorption spectrometry. Two sites within the Lami estuary recorded the highest As le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012